Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC.

نویسندگان

  • Juan José Gutiérrez-Sevillano
  • Sofia Calero
  • Rajamani Krishna
چکیده

Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner benzene; this is due to molecular packing effects that disfavor benzene. CBMC simulations for adsorption of quaternary water/methanol/ethanol/benzene mixtures show that water can be selectively adsorbed at pore saturation, making CuBTC effective in drying applications. Ideal Adsorbed Solution Theory (IAST) calculations anticipate the right hierarchy of component loadings but the quantitative agreement with CBMC mixture simulations is poor for all investigated mixtures. The failure of the IAST to provide reasonable quantitative predictions of mixture adsorption is attributable to molecular clustering effects that are induced by hydrogen bonding between water-water, methanol-methanol, and ethanol-ethanol molecule pairs. There is, however, no detectable hydrogen bonding between benzene and partner molecules in the investigated mixtures. As a consequence of molecular clustering, the activity coefficients of benzene in the mixtures is lowered below unity by one to three orders of magnitude at pore saturation; such drastic reductions cannot be adequately captured by the Wilson model, that does not explicitly account for molecular clustering. Molecular clustering effects are also shown to influence the loading dependence of the diffusivities of guest molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water ...

متن کامل

Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol

Binary mixtures of water with acetone, acetonitrile, and methanol over their entire range of compositions have been studied spectroscopically and by using molecular dynamics ~MD! simulations. We report absorption coefficients and indices of refraction over a frequency range from 3 to 55 cm, and from 400 to 1200 cm. The far-infrared absorption of the mixtures is substantially less than that for ...

متن کامل

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Structure and dynamics of nonaqueous mixtures of dipolar liquids. II. Molecular dynamics simulations

Molecular dynamics simulations have been used to study mixtures of acetone/methanol, acetonitrile/ methanol, and acetone/acetonitrile over their entire composition range. Using the effective pair potentials of the neat liquids, the simulations reproduce much of the experimental spectra presented in the previous paper @D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, J. Chem. Phys. 113, 3243 ~2...

متن کامل

Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures.

Force fields based on a Lennard-Jones (LJ) 12-6 plus point charge functional form are developed for acetone and chloroform specifically to reproduce the minimum pressure azeotropy found experimentally in this system. Point charges are determined from a CHELPG population analysis performed on an acetone-chloroform dimer. The required electrostatic surface for this dimer is determined from ab ini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 31  شماره 

صفحات  -

تاریخ انتشار 2015